Class: Numeric

Inherits:
Object show all
Includes:
Comparable
Defined in:
numeric.c,
numeric.c

Overview

Numeric is the class from which all higher-level numeric classes should inherit.

Numeric allows instantiation of heap-allocated objects. Other core numeric classes such as Integer are implemented as immediates, which means that each Integer is a single immutable object which is always passed by value.

a = 1
1.object_id == a.object_id   #=> true

There can only ever be one instance of the integer 1, for example. Ruby ensures this by preventing instantiation. If duplication is attempted, the same instance is returned.

Integer.new(1)                   #=> NoMethodError: undefined method `new' for Integer:Class
1.dup                            #=> 1
1.object_id == 1.dup.object_id   #=> true

For this reason, Numeric should be used when defining other numeric classes.

Classes which inherit from Numeric must implement coerce, which returns a two-member Array containing an object that has been coerced into an instance of the new class and self (see #coerce).

Inheriting classes should also implement arithmetic operator methods (+, -, * and /) and the <=> operator (see Comparable). These methods may rely on coerce to ensure interoperability with instances of other numeric classes.

class Tally < Numeric
  def initialize(string)
    @string = string
  end

  def to_s
    @string
  end

  def to_i
    @string.size
  end

  def coerce(other)
    [self.class.new('|' * other.to_i), self]
  end

  def <=>(other)
    to_i <=> other.to_i
  end

  def +(other)
    self.class.new('|' * (to_i + other.to_i))
  end

  def -(other)
    self.class.new('|' * (to_i - other.to_i))
  end

  def *(other)
    self.class.new('|' * (to_i * other.to_i))
  end

  def /(other)
    self.class.new('|' * (to_i / other.to_i))
  end
end

tally = Tally.new('||')
puts tally * 2            #=> "||||"
puts tally > 1            #=> true

What’s Here

First, what’s elsewhere. Class Numeric:

Here, class Numeric provides methods for:

Querying

  • #finite?: Returns true unless self is infinite or not a number.

  • #infinite?: Returns -1, nil or 1, depending on whether self is -Infinity<tt>, finite, or <tt>Infinity.

  • #integer?: Returns whether self is an integer.

  • #negative?: Returns whether self is negative.

  • #nonzero?: Returns whether self is not zero.

  • #positive?: Returns whether self is positive.

  • #real?: Returns whether self is a real value.

  • #zero?: Returns whether self is zero.

Comparing

  • #<=>: Returns:

    • -1 if self is less than the given value.

    • 0 if self is equal to the given value.

    • 1 if self is greater than the given value.

    • nil if self and the given value are not comparable.

  • #eql?: Returns whether self and the given value have the same value and type.

Converting

  • #% (aliased as #modulo): Returns the remainder of self divided by the given value.

  • #-@: Returns the value of self, negated.

  • #abs (aliased as #magnitude): Returns the absolute value of self.

  • #abs2: Returns the square of self.

  • #angle (aliased as #arg and #phase): Returns 0 if self is positive, Math::PI otherwise.

  • #ceil: Returns the smallest number greater than or equal to self, to a given precision.

  • #coerce: Returns array [coerced_self, coerced_other] for the given other value.

  • #conj (aliased as #conjugate): Returns the complex conjugate of self.

  • #denominator: Returns the denominator (always positive) of the Rational representation of self.

  • #div: Returns the value of self divided by the given value and converted to an integer.

  • #divmod: Returns array [quotient, modulus] resulting from dividing self the given divisor.

  • #fdiv: Returns the Float result of dividing self by the given divisor.

  • #floor: Returns the largest number less than or equal to self, to a given precision.

  • #i: Returns the Complex object Complex(0, self). the given value.

  • #imaginary (aliased as #imag): Returns the imaginary part of the self.

  • #numerator: Returns the numerator of the Rational representation of self; has the same sign as self.

  • #polar: Returns the array [self.abs, self.arg].

  • #quo: Returns the value of self divided by the given value.

  • #real: Returns the real part of self.

  • #rect (aliased as #rectangular): Returns the array [self, 0].

  • #remainder: Returns self-arg*(self/arg).truncate for the given arg.

  • #round: Returns the value of self rounded to the nearest value for the given a precision.

  • #to_c: Returns the Complex representation of self.

  • #to_int: Returns the Integer representation of self, truncating if necessary.

  • #truncate: Returns self truncated (toward zero) to a given precision.

Other

  • #clone: Returns self; does not allow freezing.

  • #dup (aliased as #+@): Returns self.

  • #step: Invokes the given block with the sequence of specified numbers.

Direct Known Subclasses

Complex, Float, Integer, Rational

Instance Method Summary collapse

Methods included from Comparable

#<, #<=, #==, #>, #>=, #between?, #clamp

Instance Method Details

#%(other) ⇒ Object

Returns self modulo other as a real number.

Of the Core and Standard Library classes, only Rational uses this implementation.

For Rational r and real number n, these expressions are equivalent:

r % n
r-n*(r/n).floor
r.divmod(n)[1]

See Numeric#divmod.

Examples:

r = Rational(1, 2)    # => (1/2)
r2 = Rational(2, 3)   # => (2/3)
r % r2                # => (1/2)
r % 2                 # => (1/2)
r % 2.0               # => 0.5

r = Rational(301,100) # => (301/100)
r2 = Rational(7,5)    # => (7/5)
r % r2                # => (21/100)
r % -r2               # => (-119/100)
(-r) % r2             # => (119/100)
(-r) %-r2             # => (-21/100)


666
667
668
669
670
671
672
# File 'numeric.c', line 666

static VALUE
num_modulo(VALUE x, VALUE y)
{
    VALUE q = num_funcall1(x, id_div, y);
    return rb_funcall(x, '-', 1,
                      rb_funcall(y, '*', 1, q));
}

#-Numeric

Unary Minus—Returns the receiver, negated.

Returns:



582
583
584
585
586
587
588
589
590
591
# File 'numeric.c', line 582

static VALUE
num_uminus(VALUE num)
{
    VALUE zero;

    zero = INT2FIX(0);
    do_coerce(&zero, &num, TRUE);

    return num_funcall1(zero, '-', num);
}

#<=>(other) ⇒ nil

Returns zero if self is the same as other, nil otherwise.

No subclass in the Ruby Core or Standard Library uses this implementation.

Returns:

  • (nil)


1551
1552
1553
1554
1555
1556
# File 'numeric.c', line 1551

static VALUE
num_cmp(VALUE x, VALUE y)
{
    if (x == y) return INT2FIX(0);
    return Qnil;
}

#absNumeric

Returns the absolute value of self.

12.abs        #=> 12
(-34.56).abs  #=> 34.56
-34.56.abs    #=> 34.56

Returns:



774
775
776
777
778
779
780
781
# File 'numeric.c', line 774

static VALUE
num_abs(VALUE num)
{
    if (rb_num_negative_int_p(num)) {
        return num_funcall0(num, idUMinus);
    }
    return num;
}

#abs2Object

Returns the square of self.



2385
2386
2387
2388
2389
# File 'complex.c', line 2385

static VALUE
numeric_abs2(VALUE self)
{
    return f_mul(self, self);
}

#arg0, Math::PI

Returns zero if self is positive, Math::PI otherwise.

Returns:



2397
2398
2399
2400
2401
2402
2403
# File 'complex.c', line 2397

static VALUE
numeric_arg(VALUE self)
{
    if (f_positive_p(self))
        return INT2FIX(0);
    return DBL2NUM(M_PI);
}

#arg0, Math::PI

Returns zero if self is positive, Math::PI otherwise.

Returns:



2397
2398
2399
2400
2401
2402
2403
# File 'complex.c', line 2397

static VALUE
numeric_arg(VALUE self)
{
    if (f_positive_p(self))
        return INT2FIX(0);
    return DBL2NUM(M_PI);
}

#ceil(ndigits = 0) ⇒ Float, Integer

Returns the smallest float or integer that is greater than or equal to self, as specified by the given ‘ndigits`, which must be an integer-convertible object.

Equivalent to self.to_f.ceil(ndigits).

Related: #floor, Float#ceil.

Returns:



2740
2741
2742
2743
2744
# File 'numeric.c', line 2740

static VALUE
num_ceil(int argc, VALUE *argv, VALUE num)
{
    return flo_ceil(argc, argv, rb_Float(num));
}

#clone(freeze: true) ⇒ self

Returns self.

Raises an exception if the value for freeze is neither true nor nil.

Related: Numeric#dup.

Returns:

  • (self)


546
547
548
549
550
# File 'numeric.c', line 546

static VALUE
num_clone(int argc, VALUE *argv, VALUE x)
{
    return rb_immutable_obj_clone(argc, argv, x);
}

#coerce(other) ⇒ Array

Returns a 2-element array containing two numeric elements, formed from the two operands self and other, of a common compatible type.

Of the Core and Standard Library classes, Integer, Rational, and Complex use this implementation.

Examples:

i = 2                    # => 2
i.coerce(3)              # => [3, 2]
i.coerce(3.0)            # => [3.0, 2.0]
i.coerce(Rational(1, 2)) # => [0.5, 2.0]
i.coerce(Complex(3, 4))  # Raises RangeError.

r = Rational(5, 2)       # => (5/2)
r.coerce(2)              # => [(2/1), (5/2)]
r.coerce(2.0)            # => [2.0, 2.5]
r.coerce(Rational(2, 3)) # => [(2/3), (5/2)]
r.coerce(Complex(3, 4))  # => [(3+4i), ((5/2)+0i)]

c = Complex(2, 3)        # => (2+3i)
c.coerce(2)              # => [(2+0i), (2+3i)]
c.coerce(2.0)            # => [(2.0+0i), (2+3i)]
c.coerce(Rational(1, 2)) # => [((1/2)+0i), (2+3i)]
c.coerce(Complex(3, 4))  # => [(3+4i), (2+3i)]

Raises an exception if any type conversion fails.

Returns:



430
431
432
433
434
435
436
437
438
# File 'numeric.c', line 430

static VALUE
num_coerce(VALUE x, VALUE y)
{
    if (CLASS_OF(x) == CLASS_OF(y))
        return rb_assoc_new(y, x);
    x = rb_Float(x);
    y = rb_Float(y);
    return rb_assoc_new(y, x);
}

#denominatorInteger

Returns the denominator (always positive).

Returns:



2027
2028
2029
2030
2031
# File 'rational.c', line 2027

static VALUE
numeric_denominator(VALUE self)
{
    return f_denominator(f_to_r(self));
}

#div(other) ⇒ Integer

Returns the quotient self/other as an integer (via floor), using method / in the derived class of self. (Numeric itself does not define method /.)

Of the Core and Standard Library classes, Only Float and Rational use this implementation.

Returns:



625
626
627
628
629
630
# File 'numeric.c', line 625

static VALUE
num_div(VALUE x, VALUE y)
{
    if (rb_equal(INT2FIX(0), y)) rb_num_zerodiv();
    return rb_funcall(num_funcall1(x, '/', y), rb_intern("floor"), 0);
}

#divmod(other) ⇒ Array

Returns a 2-element array [q, r], where

q = (self/other).floor                  # Quotient
r = self % other                        # Remainder

Of the Core and Standard Library classes, only Rational uses this implementation.

Examples:

Rational(11, 1).divmod(4)               # => [2, (3/1)]
Rational(11, 1).divmod(-4)              # => [-3, (-1/1)]
Rational(-11, 1).divmod(4)              # => [-3, (1/1)]
Rational(-11, 1).divmod(-4)             # => [2, (-3/1)]

Rational(12, 1).divmod(4)               # => [3, (0/1)]
Rational(12, 1).divmod(-4)              # => [-3, (0/1)]
Rational(-12, 1).divmod(4)              # => [-3, (0/1)]
Rational(-12, 1).divmod(-4)             # => [3, (0/1)]

Rational(13, 1).divmod(4.0)             # => [3, 1.0]
Rational(13, 1).divmod(Rational(4, 11)) # => [35, (3/11)]

Returns:



756
757
758
759
760
# File 'numeric.c', line 756

static VALUE
num_divmod(VALUE x, VALUE y)
{
    return rb_assoc_new(num_div(x, y), num_modulo(x, y));
}

#eql?(other) ⇒ Boolean

Returns true if self and other are the same type and have equal values.

Of the Core and Standard Library classes, only Integer, Rational, and Complex use this implementation.

Examples:

1.eql?(1)              # => true
1.eql?(1.0)            # => false
1.eql?(Rational(1, 1)) # => false
1.eql?(Complex(1, 0))  # => false

Method eql? is different from == in that eql? requires matching types, while == does not.

Returns:

  • (Boolean)


1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
# File 'numeric.c', line 1529

static VALUE
num_eql(VALUE x, VALUE y)
{
    if (TYPE(x) != TYPE(y)) return Qfalse;

    if (RB_BIGNUM_TYPE_P(x)) {
        return rb_big_eql(x, y);
    }

    return rb_equal(x, y);
}

#fdiv(other) ⇒ Float

Returns the quotient self/other as a float, using method / in the derived class of self. (Numeric itself does not define method /.)

Of the Core and Standard Library classes, only BigDecimal uses this implementation.

Returns:



606
607
608
609
610
# File 'numeric.c', line 606

static VALUE
num_fdiv(VALUE x, VALUE y)
{
    return rb_funcall(rb_Float(x), '/', 1, y);
}

#floor(ndigits = 0) ⇒ Float, Integer

Returns the largest float or integer that is less than or equal to self, as specified by the given ‘ndigits`, which must be an integer-convertible object.

Equivalent to self.to_f.floor(ndigits).

Related: #ceil, Float#floor.

Returns:



2720
2721
2722
2723
2724
# File 'numeric.c', line 2720

static VALUE
num_floor(int argc, VALUE *argv, VALUE num)
{
    return flo_floor(argc, argv, rb_Float(num));
}

#iObject

Returns Complex(0, self):

2.i              # => (0+2i)
-2.i             # => (0-2i)
2.0.i            # => (0+2.0i)
Rational(1, 2).i # => (0+(1/2)*i)
Complex(3, 4).i  # Raises NoMethodError.


569
570
571
572
573
# File 'numeric.c', line 569

static VALUE
num_imaginary(VALUE num)
{
    return rb_complex_new(INT2FIX(0), num);
}

#absNumeric

Returns the absolute value of self.

12.abs        #=> 12
(-34.56).abs  #=> 34.56
-34.56.abs    #=> 34.56

Returns:



774
775
776
777
778
779
780
781
# File 'numeric.c', line 774

static VALUE
num_abs(VALUE num)
{
    if (rb_num_negative_int_p(num)) {
        return num_funcall0(num, idUMinus);
    }
    return num;
}

#%(other) ⇒ Object

Returns self modulo other as a real number.

Of the Core and Standard Library classes, only Rational uses this implementation.

For Rational r and real number n, these expressions are equivalent:

r % n
r-n*(r/n).floor
r.divmod(n)[1]

See Numeric#divmod.

Examples:

r = Rational(1, 2)    # => (1/2)
r2 = Rational(2, 3)   # => (2/3)
r % r2                # => (1/2)
r % 2                 # => (1/2)
r % 2.0               # => 0.5

r = Rational(301,100) # => (301/100)
r2 = Rational(7,5)    # => (7/5)
r % r2                # => (21/100)
r % -r2               # => (-119/100)
(-r) % r2             # => (119/100)
(-r) %-r2             # => (-21/100)


666
667
668
669
670
671
672
# File 'numeric.c', line 666

static VALUE
num_modulo(VALUE x, VALUE y)
{
    VALUE q = num_funcall1(x, id_div, y);
    return rb_funcall(x, '-', 1,
                      rb_funcall(y, '*', 1, q));
}

#negative?Boolean

Returns true if self is less than 0, false otherwise.

Returns:

  • (Boolean)


902
903
904
905
906
# File 'numeric.c', line 902

static VALUE
num_negative_p(VALUE num)
{
    return RBOOL(rb_num_negative_int_p(num));
}

#nonzero?self?

Returns self if self is not a zero value, nil otherwise; uses method zero? for the evaluation.

The returned self allows the method to be chained:

a = %w[z Bb bB bb BB a aA Aa AA A]
a.sort {|a, b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
# => ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]

Of the Core and Standard Library classes, Integer, Float, Rational, and Complex use this implementation.

Related: #zero?

Returns:

  • (self, nil)


836
837
838
839
840
841
842
843
# File 'numeric.c', line 836

static VALUE
num_nonzero_p(VALUE num)
{
    if (RTEST(num_funcall0(num, rb_intern("zero?")))) {
        return Qnil;
    }
    return num;
}

#numeratorInteger

Returns the numerator.

Returns:



2015
2016
2017
2018
2019
# File 'rational.c', line 2015

static VALUE
numeric_numerator(VALUE self)
{
    return f_numerator(f_to_r(self));
}

#arg0, Math::PI

Returns zero if self is positive, Math::PI otherwise.

Returns:



2397
2398
2399
2400
2401
2402
2403
# File 'complex.c', line 2397

static VALUE
numeric_arg(VALUE self)
{
    if (f_positive_p(self))
        return INT2FIX(0);
    return DBL2NUM(M_PI);
}

#polarArray

Returns array [self.abs, self.arg].

Returns:



2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
# File 'complex.c', line 2423

static VALUE
numeric_polar(VALUE self)
{
    VALUE abs, arg;

    if (RB_INTEGER_TYPE_P(self)) {
        abs = rb_int_abs(self);
        arg = numeric_arg(self);
    }
    else if (RB_FLOAT_TYPE_P(self)) {
        abs = rb_float_abs(self);
        arg = float_arg(self);
    }
    else if (RB_TYPE_P(self, T_RATIONAL)) {
        abs = rb_rational_abs(self);
        arg = numeric_arg(self);
    }
    else {
        abs = f_abs(self);
        arg = f_arg(self);
    }
    return rb_assoc_new(abs, arg);
}

#positive?Boolean

Returns true if self is greater than 0, false otherwise.

Returns:

  • (Boolean)


878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
# File 'numeric.c', line 878

static VALUE
num_positive_p(VALUE num)
{
    const ID mid = '>';

    if (FIXNUM_P(num)) {
        if (method_basic_p(rb_cInteger))
            return RBOOL((SIGNED_VALUE)num > (SIGNED_VALUE)INT2FIX(0));
    }
    else if (RB_BIGNUM_TYPE_P(num)) {
        if (method_basic_p(rb_cInteger))
            return RBOOL(BIGNUM_POSITIVE_P(num) && !rb_bigzero_p(num));
    }
    return rb_num_compare_with_zero(num, mid);
}

#quo(int_or_rat) ⇒ Object #quo(flo) ⇒ Object

Returns the most exact division (rational for integers, float for floats).



2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
# File 'rational.c', line 2042

VALUE
rb_numeric_quo(VALUE x, VALUE y)
{
    if (RB_TYPE_P(x, T_COMPLEX)) {
        return rb_complex_div(x, y);
    }

    if (RB_FLOAT_TYPE_P(y)) {
        return rb_funcallv(x, idFdiv, 1, &y);
    }

    x = rb_convert_type(x, T_RATIONAL, "Rational", "to_r");
    return rb_rational_div(x, y);
}

#rectArray

Returns array [self, 0].

Returns:



2411
2412
2413
2414
2415
# File 'complex.c', line 2411

static VALUE
numeric_rect(VALUE self)
{
    return rb_assoc_new(self, INT2FIX(0));
}

#rectArray

Returns array [self, 0].

Returns:



2411
2412
2413
2414
2415
# File 'complex.c', line 2411

static VALUE
numeric_rect(VALUE self)
{
    return rb_assoc_new(self, INT2FIX(0));
}

#remainder(other) ⇒ Object

Returns the remainder after dividing self by other.

Of the Core and Standard Library classes, only Float and Rational use this implementation.

Examples:

11.0.remainder(4)              # => 3.0
11.0.remainder(-4)             # => 3.0
-11.0.remainder(4)             # => -3.0
-11.0.remainder(-4)            # => -3.0

12.0.remainder(4)              # => 0.0
12.0.remainder(-4)             # => 0.0
-12.0.remainder(4)             # => -0.0
-12.0.remainder(-4)            # => -0.0

13.0.remainder(4.0)            # => 1.0
13.0.remainder(Rational(4, 1)) # => 1.0

Rational(13, 1).remainder(4)   # => (1/1)
Rational(13, 1).remainder(-4)  # => (1/1)
Rational(-13, 1).remainder(4)  # => (-1/1)
Rational(-13, 1).remainder(-4) # => (-1/1)


705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
# File 'numeric.c', line 705

static VALUE
num_remainder(VALUE x, VALUE y)
{
    if (!rb_obj_is_kind_of(y, rb_cNumeric)) {
        do_coerce(&x, &y, TRUE);
    }
    VALUE z = num_funcall1(x, '%', y);

    if ((!rb_equal(z, INT2FIX(0))) &&
        ((rb_num_negative_int_p(x) &&
          rb_num_positive_int_p(y)) ||
         (rb_num_positive_int_p(x) &&
          rb_num_negative_int_p(y)))) {
        if (RB_FLOAT_TYPE_P(y)) {
            if (isinf(RFLOAT_VALUE(y))) {
                return x;
            }
        }
        return rb_funcall(z, '-', 1, y);
    }
    return z;
}

#round(digits = 0) ⇒ Integer, Float

Returns self rounded to the nearest value with a precision of digits decimal digits.

Numeric implements this by converting self to a Float and invoking Float#round.

Returns:



2757
2758
2759
2760
2761
# File 'numeric.c', line 2757

static VALUE
num_round(int argc, VALUE* argv, VALUE num)
{
    return flo_round(argc, argv, rb_Float(num));
}

#singleton_method_added(name) ⇒ Object

:nodoc:

Trap attempts to add methods to Numeric objects. Always raises a TypeError.

Numerics should be values; singleton_methods should not be added to them.



520
521
522
523
524
525
526
527
528
529
530
531
532
# File 'numeric.c', line 520

static VALUE
num_sadded(VALUE x, VALUE name)
{
    ID mid = rb_to_id(name);
    /* ruby_frame = ruby_frame->prev; */ /* pop frame for "singleton_method_added" */
    rb_remove_method_id(rb_singleton_class(x), mid);
    rb_raise(rb_eTypeError,
             "can't define singleton method \"%"PRIsVALUE"\" for %"PRIsVALUE,
             rb_id2str(mid),
             rb_obj_class(x));

    UNREACHABLE_RETURN(Qnil);
}

#step(to = nil, by = 1) {|n| ... } ⇒ self #step(to = nil, by = 1) ⇒ Object #step(to = nil, by: 1) {|n| ... } ⇒ self #step(to = nil, by: 1) ⇒ Object #step(by: 1, to: ) {|n| ... } ⇒ self #step(by: 1, to: ) ⇒ Object #step(by: , to: nil) {|n| ... } ⇒ self #step(by: , to: nil) ⇒ Object

Generates a sequence of numbers; with a block given, traverses the sequence.

Of the Core and Standard Library classes, Integer, Float, and Rational use this implementation.

A quick example:

squares = []
1.step(by: 2, to: 10) {|i| squares.push(i*i) }
squares # => [1, 9, 25, 49, 81]

The generated sequence:

  • Begins with self.

  • Continues at intervals of by (which may not be zero).

  • Ends with the last number that is within or equal to to;

that is, less than or equal to +to+ if +by+ is positive,
greater than or equal to +to+ if +by+ is negative.
If +to+ is +nil+, the sequence is of infinite length.

If a block is given, calls the block with each number in the sequence; returns self. If no block is given, returns an Enumerator::ArithmeticSequence.

Keyword Arguments

With keyword arguments by and to, their values (or defaults) determine the step and limit:

# Both keywords given.
squares = []
4.step(by: 2, to: 10) {|i| squares.push(i*i) }    # => 4
squares # => [16, 36, 64, 100]
cubes = []
3.step(by: -1.5, to: -3) {|i| cubes.push(i*i*i) } # => 3
cubes   # => [27.0, 3.375, 0.0, -3.375, -27.0]
squares = []
1.2.step(by: 0.2, to: 2.0) {|f| squares.push(f*f) }
squares # => [1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0]

squares = []
Rational(6/5).step(by: 0.2, to: 2.0) {|r| squares.push(r*r) }
squares # => [1.0, 1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0]

# Only keyword to given.
squares = []
4.step(to: 10) {|i| squares.push(i*i) }           # => 4
squares # => [16, 25, 36, 49, 64, 81, 100]
# Only by given.

# Only keyword by given
squares = []
4.step(by:2) {|i| squares.push(i*i); break if i > 10 }
squares # => [16, 36, 64, 100, 144]

# No block given.
e = 3.step(by: -1.5, to: -3) # => (3.step(by: -1.5, to: -3))
e.class                      # => Enumerator::ArithmeticSequence

Positional Arguments

With optional positional arguments to and by, their values (or defaults) determine the step and limit:

squares = []
4.step(10, 2) {|i| squares.push(i*i) }    # => 4
squares # => [16, 36, 64, 100]
squares = []
4.step(10) {|i| squares.push(i*i) }
squares # => [16, 25, 36, 49, 64, 81, 100]
squares = []
4.step {|i| squares.push(i*i); break if i > 10 }  # => nil
squares # => [16, 25, 36, 49, 64, 81, 100, 121]

Implementation Notes

If all the arguments are integers, the loop operates using an integer counter.

If any of the arguments are floating point numbers, all are converted to floats, and the loop is executed floor(n + n*Float::EPSILON) + 1 times, where n = (limit - self)/step.

Overloads:

  • #step(to = nil, by = 1) {|n| ... } ⇒ self

    Yields:

    • (n)

    Returns:

    • (self)
  • #step(to = nil, by: 1) {|n| ... } ⇒ self

    Yields:

    • (n)

    Returns:

    • (self)
  • #step(by: 1, to: ) {|n| ... } ⇒ self

    Yields:

    • (n)

    Returns:

    • (self)
  • #step(by: , to: nil) {|n| ... } ⇒ self

    Yields:

    • (n)

    Returns:

    • (self)


3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
# File 'numeric.c', line 3094

static VALUE
num_step(int argc, VALUE *argv, VALUE from)
{
    VALUE to, step;
    int desc, inf;

    if (!rb_block_given_p()) {
        VALUE by = Qundef;

        num_step_extract_args(argc, argv, &to, &step, &by);
        if (!UNDEF_P(by)) {
            step = by;
        }
        if (NIL_P(step)) {
            step = INT2FIX(1);
        }
        else if (rb_equal(step, INT2FIX(0))) {
            rb_raise(rb_eArgError, "step can't be 0");
        }
        if ((NIL_P(to) || rb_obj_is_kind_of(to, rb_cNumeric)) &&
            rb_obj_is_kind_of(step, rb_cNumeric)) {
            return rb_arith_seq_new(from, ID2SYM(rb_frame_this_func()), argc, argv,
                                    num_step_size, from, to, step, FALSE);
        }

        return SIZED_ENUMERATOR_KW(from, 2, ((VALUE [2]){to, step}), num_step_size, FALSE);
    }

    desc = num_step_scan_args(argc, argv, &to, &step, TRUE, FALSE);
    if (rb_equal(step, INT2FIX(0))) {
        inf = 1;
    }
    else if (RB_FLOAT_TYPE_P(to)) {
        double f = RFLOAT_VALUE(to);
        inf = isinf(f) && (signbit(f) ? desc : !desc);
    }
    else inf = 0;

    if (FIXNUM_P(from) && (inf || FIXNUM_P(to)) && FIXNUM_P(step)) {
        long i = FIX2LONG(from);
        long diff = FIX2LONG(step);

        if (inf) {
            for (;; i += diff)
                rb_yield(LONG2FIX(i));
        }
        else {
            long end = FIX2LONG(to);

            if (desc) {
                for (; i >= end; i += diff)
                    rb_yield(LONG2FIX(i));
            }
            else {
                for (; i <= end; i += diff)
                    rb_yield(LONG2FIX(i));
            }
        }
    }
    else if (!ruby_float_step(from, to, step, FALSE, FALSE)) {
        VALUE i = from;

        if (inf) {
            for (;; i = rb_funcall(i, '+', 1, step))
                rb_yield(i);
        }
        else {
            ID cmp = desc ? '<' : '>';

            for (; !RTEST(rb_funcall(i, cmp, 1, to)); i = rb_funcall(i, '+', 1, step))
                rb_yield(i);
        }
    }
    return from;
}

#to_cObject

Returns self as a Complex object.



1948
1949
1950
1951
1952
# File 'complex.c', line 1948

static VALUE
numeric_to_c(VALUE self)
{
    return rb_complex_new1(self);
}

#to_intInteger

Returns self as an integer; converts using method to_i in the derived class.

Of the Core and Standard Library classes, only Rational and Complex use this implementation.

Examples:

Rational(1, 2).to_int # => 0
Rational(2, 1).to_int # => 2
Complex(2, 0).to_int  # => 2
Complex(2, 1).to_int  # Raises RangeError (non-zero imaginary part)

Returns:



864
865
866
867
868
# File 'numeric.c', line 864

static VALUE
num_to_int(VALUE num)
{
    return num_funcall0(num, id_to_i);
}

#truncate(digits = 0) ⇒ Integer, Float

Returns self truncated (toward zero) to a precision of digits decimal digits.

Numeric implements this by converting self to a Float and invoking Float#truncate.

Returns:



2774
2775
2776
2777
2778
# File 'numeric.c', line 2774

static VALUE
num_truncate(int argc, VALUE *argv, VALUE num)
{
    return flo_truncate(argc, argv, rb_Float(num));
}

#zero?Boolean

Returns true if zero has a zero value, false otherwise.

Of the Core and Standard Library classes, only Rational and Complex use this implementation.

Returns:

  • (Boolean)


794
795
796
797
798
# File 'numeric.c', line 794

static VALUE
num_zero_p(VALUE num)
{
    return rb_equal(num, INT2FIX(0));
}