Module: Math
- Defined in:
- math.c
Defined Under Namespace
Classes: DomainError
Constant Summary collapse
- PI =
Definition of the mathematical constant PI as a Float number.
DBL2NUM(M_PI)
- E =
Definition of the mathematical constant E for Euler’s number (e) as a Float number.
DBL2NUM(exp(1.0))
Class Method Summary collapse
-
.acos(x) ⇒ Float
Computes the arc cosine of
x
. -
.acosh(x) ⇒ Float
Computes the inverse hyperbolic cosine of
x
. -
.asin(x) ⇒ Float
Computes the arc sine of
x
. -
.asinh(x) ⇒ Float
Computes the inverse hyperbolic sine of
x
. -
.atan(x) ⇒ Float
Computes the arc tangent of
x
. -
.atan2(y, x) ⇒ Float
Computes the arc tangent given
y
andx
. -
.atanh(x) ⇒ Float
Computes the inverse hyperbolic tangent of
x
. -
.cbrt(x) ⇒ Float
Returns the cube root of
x
. -
.cos(x) ⇒ Float
Computes the cosine of
x
(expressed in radians). -
.cosh(x) ⇒ Float
Computes the hyperbolic cosine of
x
(expressed in radians). -
.erf(x) ⇒ Float
Calculates the error function of
x
. -
.erfc(x) ⇒ Float
Calculates the complementary error function of x.
-
.exp(x) ⇒ Float
Returns e**x.
-
.frexp(x) ⇒ Array
Returns a two-element array containing the normalized fraction (a Float) and exponent (an Integer) of
x
. -
.gamma(x) ⇒ Float
Calculates the gamma function of x.
-
.hypot(x, y) ⇒ Float
Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle with sides
x
andy
. -
.ldexp(fraction, exponent) ⇒ Float
Returns the value of
fraction
*(2**exponent
). -
.lgamma(x) ⇒ Array, ...
Calculates the logarithmic gamma of
x
and the sign of gamma ofx
. -
.log(*args) ⇒ Object
Returns the logarithm of
x
. -
.log10(x) ⇒ Float
Returns the base 10 logarithm of
x
. -
.log2(x) ⇒ Float
Returns the base 2 logarithm of
x
. -
.sin(x) ⇒ Float
Computes the sine of
x
(expressed in radians). -
.sinh(x) ⇒ Float
Computes the hyperbolic sine of
x
(expressed in radians). -
.sqrt(x) ⇒ Float
Returns the non-negative square root of
x
. -
.tan(x) ⇒ Float
Computes the tangent of
x
(expressed in radians). -
.tanh(x) ⇒ Float
Computes the hyperbolic tangent of
x
(expressed in radians).
Instance Method Summary collapse
-
#acos(x) ⇒ Float
private
Computes the arc cosine of
x
. -
#acosh(x) ⇒ Float
private
Computes the inverse hyperbolic cosine of
x
. -
#asin(x) ⇒ Float
private
Computes the arc sine of
x
. -
#asinh(x) ⇒ Float
private
Computes the inverse hyperbolic sine of
x
. -
#atan(x) ⇒ Float
private
Computes the arc tangent of
x
. -
#atan2(y, x) ⇒ Float
private
Computes the arc tangent given
y
andx
. -
#atanh(x) ⇒ Float
private
Computes the inverse hyperbolic tangent of
x
. -
#cbrt(x) ⇒ Float
private
Returns the cube root of
x
. -
#cos(x) ⇒ Float
private
Computes the cosine of
x
(expressed in radians). -
#cosh(x) ⇒ Float
private
Computes the hyperbolic cosine of
x
(expressed in radians). -
#erf(x) ⇒ Float
private
Calculates the error function of
x
. -
#erfc(x) ⇒ Float
private
Calculates the complementary error function of x.
-
#exp(x) ⇒ Float
private
Returns e**x.
-
#frexp(x) ⇒ Array
private
Returns a two-element array containing the normalized fraction (a Float) and exponent (an Integer) of
x
. -
#gamma(x) ⇒ Float
private
Calculates the gamma function of x.
-
#hypot(x, y) ⇒ Float
private
Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle with sides
x
andy
. -
#ldexp(fraction, exponent) ⇒ Float
private
Returns the value of
fraction
*(2**exponent
). -
#lgamma(x) ⇒ Array, ...
private
Calculates the logarithmic gamma of
x
and the sign of gamma ofx
. -
#log(*args) ⇒ Object
private
Returns the logarithm of
x
. -
#log10(x) ⇒ Float
private
Returns the base 10 logarithm of
x
. -
#log2(x) ⇒ Float
private
Returns the base 2 logarithm of
x
. -
#sin(x) ⇒ Float
private
Computes the sine of
x
(expressed in radians). -
#sinh(x) ⇒ Float
private
Computes the hyperbolic sine of
x
(expressed in radians). -
#sqrt(x) ⇒ Float
private
Returns the non-negative square root of
x
. -
#tan(x) ⇒ Float
private
Computes the tangent of
x
(expressed in radians). -
#tanh(x) ⇒ Float
private
Computes the hyperbolic tangent of
x
(expressed in radians).
Class Method Details
.acos(x) ⇒ Float
181 182 183 184 185 186 187 188 189 190 |
# File 'math.c', line 181
static VALUE
math_acos(VALUE unused_obj, VALUE x)
{
double d;
d = Get_Double(x);
/* check for domain error */
if (d < -1.0 || 1.0 < d) domain_error("acos");
return DBL2NUM(acos(d));
}
|
.acosh(x) ⇒ Float
Computes the inverse hyperbolic cosine of x
.
Domain: [1, INFINITY)
Codomain: [0, INFINITY)
Math.acosh(1) #=> 0.0
340 341 342 343 344 345 346 347 348 349 |
# File 'math.c', line 340
static VALUE
math_acosh(VALUE unused_obj, VALUE x)
{
double d;
d = Get_Double(x);
/* check for domain error */
if (d < 1.0) domain_error("acosh");
return DBL2NUM(acosh(d));
}
|
.asin(x) ⇒ Float
205 206 207 208 209 210 211 212 213 214 |
# File 'math.c', line 205
static VALUE
math_asin(VALUE unused_obj, VALUE x)
{
double d;
d = Get_Double(x);
/* check for domain error */
if (d < -1.0 || 1.0 < d) domain_error("asin");
return DBL2NUM(asin(d));
}
|
.asinh(x) ⇒ Float
Computes the inverse hyperbolic sine of x
.
Domain: (-INFINITY, INFINITY)
Codomain: (-INFINITY, INFINITY)
Math.asinh(1) #=> 0.881373587019543
365 366 367 368 369 |
# File 'math.c', line 365
static VALUE
math_asinh(VALUE unused_obj, VALUE x)
{
return DBL2NUM(asinh(Get_Double(x)));
}
|
.atan(x) ⇒ Float
Computes the arc tangent of x
. Returns -PI/2..PI/2.
Domain: (-INFINITY, INFINITY)
Codomain: (-PI/2, PI/2)
Math.atan(0) #=> 0.0
229 230 231 232 233 |
# File 'math.c', line 229
static VALUE
math_atan(VALUE unused_obj, VALUE x)
{
return DBL2NUM(atan(Get_Double(x)));
}
|
.atan2(y, x) ⇒ Float
Computes the arc tangent given y
and x
. Returns a Float in the range -PI..PI. Return value is a angle in radians between the positive x-axis of cartesian plane and the point given by the coordinates (x
, y
) on it.
Domain: (-INFINITY, INFINITY)
Codomain: [-PI, PI]
Math.atan2(-0.0, -1.0) #=> -3.141592653589793
Math.atan2(-1.0, -1.0) #=> -2.356194490192345
Math.atan2(-1.0, 0.0) #=> -1.5707963267948966
Math.atan2(-1.0, 1.0) #=> -0.7853981633974483
Math.atan2(-0.0, 1.0) #=> -0.0
Math.atan2(0.0, 1.0) #=> 0.0
Math.atan2(1.0, 1.0) #=> 0.7853981633974483
Math.atan2(1.0, 0.0) #=> 1.5707963267948966
Math.atan2(1.0, -1.0) #=> 2.356194490192345
Math.atan2(0.0, -1.0) #=> 3.141592653589793
Math.atan2(INFINITY, INFINITY) #=> 0.7853981633974483
Math.atan2(INFINITY, -INFINITY) #=> 2.356194490192345
Math.atan2(-INFINITY, INFINITY) #=> -0.7853981633974483
Math.atan2(-INFINITY, -INFINITY) #=> -2.356194490192345
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
# File 'math.c', line 74
static VALUE
math_atan2(VALUE unused_obj, VALUE y, VALUE x)
{
double dx, dy;
dx = Get_Double(x);
dy = Get_Double(y);
if (dx == 0.0 && dy == 0.0) {
if (!signbit(dx))
return DBL2NUM(dy);
if (!signbit(dy))
return DBL2NUM(M_PI);
return DBL2NUM(-M_PI);
}
#ifndef ATAN2_INF_C99
if (isinf(dx) && isinf(dy)) {
/* optimization for FLONUM */
if (dx < 0.0) {
const double dz = (3.0 * M_PI / 4.0);
return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz);
}
else {
const double dz = (M_PI / 4.0);
return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz);
}
}
#endif
return DBL2NUM(atan2(dy, dx));
}
|
.atanh(x) ⇒ Float
Computes the inverse hyperbolic tangent of x
.
Domain: (-1, 1)
Codomain: (-INFINITY, INFINITY)
Math.atanh(1) #=> Infinity
385 386 387 388 389 390 391 392 393 394 395 396 397 |
# File 'math.c', line 385
static VALUE
math_atanh(VALUE unused_obj, VALUE x)
{
double d;
d = Get_Double(x);
/* check for domain error */
if (d < -1.0 || +1.0 < d) domain_error("atanh");
/* check for pole error */
if (d == -1.0) return DBL2NUM(-HUGE_VAL);
if (d == +1.0) return DBL2NUM(+HUGE_VAL);
return DBL2NUM(atanh(d));
}
|
.cbrt(x) ⇒ Float
Returns the cube root of x
.
Domain: (-INFINITY, INFINITY)
Codomain: (-INFINITY, INFINITY)
-9.upto(9) {|x|
p [x, Math.cbrt(x), Math.cbrt(x)**3]
}
#=> [-9, -2.0800838230519, -9.0]
# [-8, -2.0, -8.0]
# [-7, -1.91293118277239, -7.0]
# [-6, -1.81712059283214, -6.0]
# [-5, -1.7099759466767, -5.0]
# [-4, -1.5874010519682, -4.0]
# [-3, -1.44224957030741, -3.0]
# [-2, -1.25992104989487, -2.0]
# [-1, -1.0, -1.0]
# [0, 0.0, 0.0]
# [1, 1.0, 1.0]
# [2, 1.25992104989487, 2.0]
# [3, 1.44224957030741, 3.0]
# [4, 1.5874010519682, 4.0]
# [5, 1.7099759466767, 5.0]
# [6, 1.81712059283214, 6.0]
# [7, 1.91293118277239, 7.0]
# [8, 2.0, 8.0]
# [9, 2.0800838230519, 9.0]
700 701 702 703 704 705 706 707 708 709 710 711 |
# File 'math.c', line 700
static VALUE
math_cbrt(VALUE unused_obj, VALUE x)
{
double f = Get_Double(x);
double r = cbrt(f);
#if defined __GLIBC__
if (isfinite(r)) {
r = (2.0 * r + (f / r / r)) / 3.0;
}
#endif
return DBL2NUM(r);
}
|
.cos(x) ⇒ Float
119 120 121 122 123 |
# File 'math.c', line 119
static VALUE
math_cos(VALUE unused_obj, VALUE x)
{
return DBL2NUM(cos(Get_Double(x)));
}
|
.cosh(x) ⇒ Float
Computes the hyperbolic cosine of x
(expressed in radians).
Domain: (-INFINITY, INFINITY)
Codomain: [1, INFINITY)
Math.cosh(0) #=> 1.0
257 258 259 260 261 |
# File 'math.c', line 257
static VALUE
math_cosh(VALUE unused_obj, VALUE x)
{
return DBL2NUM(cosh(Get_Double(x)));
}
|
.erf(x) ⇒ Float
Calculates the error function of x
.
Domain: (-INFINITY, INFINITY)
Codomain: (-1, 1)
Math.erf(0) #=> 0.0
780 781 782 783 784 |
# File 'math.c', line 780
static VALUE
math_erf(VALUE unused_obj, VALUE x)
{
return DBL2NUM(erf(Get_Double(x)));
}
|
.erfc(x) ⇒ Float
Calculates the complementary error function of x.
Domain: (-INFINITY, INFINITY)
Codomain: (0, 2)
Math.erfc(0) #=> 1.0
800 801 802 803 804 |
# File 'math.c', line 800
static VALUE
math_erfc(VALUE unused_obj, VALUE x)
{
return DBL2NUM(erfc(Get_Double(x)));
}
|
.exp(x) ⇒ Float
415 416 417 418 419 |
# File 'math.c', line 415
static VALUE
math_exp(VALUE unused_obj, VALUE x)
{
return DBL2NUM(exp(Get_Double(x)));
}
|
.frexp(x) ⇒ Array
Returns a two-element array containing the normalized fraction (a Float) and exponent (an Integer) of x
.
fraction, exponent = Math.frexp(1234) #=> [0.6025390625, 11]
fraction * 2**exponent #=> 1234.0
724 725 726 727 728 729 730 731 732 |
# File 'math.c', line 724
static VALUE
math_frexp(VALUE unused_obj, VALUE x)
{
double d;
int exp;
d = frexp(Get_Double(x), &exp);
return rb_assoc_new(DBL2NUM(d), INT2NUM(exp));
}
|
.gamma(x) ⇒ Float
Calculates the gamma function of x.
Note that gamma(n) is same as fact(n-1) for integer n > 0.
However gamma(n) returns float and can be an approximation.
def fact(n) (1..n).inject(1) {|r,i| r*i } end
1.upto(26) {|i| p [i, Math.gamma(i), fact(i-1)] }
#=> [1, 1.0, 1]
# [2, 1.0, 1]
# [3, 2.0, 2]
# [4, 6.0, 6]
# [5, 24.0, 24]
# [6, 120.0, 120]
# [7, 720.0, 720]
# [8, 5040.0, 5040]
# [9, 40320.0, 40320]
# [10, 362880.0, 362880]
# [11, 3628800.0, 3628800]
# [12, 39916800.0, 39916800]
# [13, 479001600.0, 479001600]
# [14, 6227020800.0, 6227020800]
# [15, 87178291200.0, 87178291200]
# [16, 1307674368000.0, 1307674368000]
# [17, 20922789888000.0, 20922789888000]
# [18, 355687428096000.0, 355687428096000]
# [19, 6.402373705728e+15, 6402373705728000]
# [20, 1.21645100408832e+17, 121645100408832000]
# [21, 2.43290200817664e+18, 2432902008176640000]
# [22, 5.109094217170944e+19, 51090942171709440000]
# [23, 1.1240007277776077e+21, 1124000727777607680000]
# [24, 2.5852016738885062e+22, 25852016738884976640000]
# [25, 6.204484017332391e+23, 620448401733239439360000]
# [26, 1.5511210043330954e+25, 15511210043330985984000000]
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 |
# File 'math.c', line 846
static VALUE
math_gamma(VALUE unused_obj, VALUE x)
{
static const double fact_table[] = {
/* fact(0) */ 1.0,
/* fact(1) */ 1.0,
/* fact(2) */ 2.0,
/* fact(3) */ 6.0,
/* fact(4) */ 24.0,
/* fact(5) */ 120.0,
/* fact(6) */ 720.0,
/* fact(7) */ 5040.0,
/* fact(8) */ 40320.0,
/* fact(9) */ 362880.0,
/* fact(10) */ 3628800.0,
/* fact(11) */ 39916800.0,
/* fact(12) */ 479001600.0,
/* fact(13) */ 6227020800.0,
/* fact(14) */ 87178291200.0,
/* fact(15) */ 1307674368000.0,
/* fact(16) */ 20922789888000.0,
/* fact(17) */ 355687428096000.0,
/* fact(18) */ 6402373705728000.0,
/* fact(19) */ 121645100408832000.0,
/* fact(20) */ 2432902008176640000.0,
/* fact(21) */ 51090942171709440000.0,
/* fact(22) */ 1124000727777607680000.0,
/* fact(23)=25852016738884976640000 needs 56bit mantissa which is
* impossible to represent exactly in IEEE 754 double which have
* 53bit mantissa. */
};
enum {NFACT_TABLE = numberof(fact_table)};
double d;
d = Get_Double(x);
/* check for domain error */
if (isinf(d)) {
if (signbit(d)) domain_error("gamma");
return DBL2NUM(HUGE_VAL);
}
if (d == 0.0) {
return signbit(d) ? DBL2NUM(-HUGE_VAL) : DBL2NUM(HUGE_VAL);
}
if (d == floor(d)) {
if (d < 0.0) domain_error("gamma");
if (1.0 <= d && d <= (double)NFACT_TABLE) {
return DBL2NUM(fact_table[(int)d - 1]);
}
}
return DBL2NUM(tgamma(d));
}
|
.hypot(x, y) ⇒ Float
Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle with sides x
and y
.
Math.hypot(3, 4) #=> 5.0
760 761 762 763 764 |
# File 'math.c', line 760
static VALUE
math_hypot(VALUE unused_obj, VALUE x, VALUE y)
{
return DBL2NUM(hypot(Get_Double(x), Get_Double(y)));
}
|
.ldexp(fraction, exponent) ⇒ Float
744 745 746 747 748 |
# File 'math.c', line 744
static VALUE
math_ldexp(VALUE unused_obj, VALUE x, VALUE n)
{
return DBL2NUM(ldexp(Get_Double(x), NUM2INT(n)));
}
|
.lgamma(x) ⇒ Array, ...
Calculates the logarithmic gamma of x
and the sign of gamma of x
.
Math.lgamma(x) is same as
[Math.log(Math.gamma(x).abs), Math.gamma(x) < 0 ? -1 : 1]
but avoid overflow by Math.gamma(x) for large x.
Math.lgamma(0) #=> [Infinity, 1]
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 |
# File 'math.c', line 911
static VALUE
math_lgamma(VALUE unused_obj, VALUE x)
{
double d;
int sign=1;
VALUE v;
d = Get_Double(x);
/* check for domain error */
if (isinf(d)) {
if (signbit(d)) domain_error("lgamma");
return rb_assoc_new(DBL2NUM(HUGE_VAL), INT2FIX(1));
}
if (d == 0.0) {
VALUE vsign = signbit(d) ? INT2FIX(-1) : INT2FIX(+1);
return rb_assoc_new(DBL2NUM(HUGE_VAL), vsign);
}
v = DBL2NUM(lgamma_r(d, &sign));
return rb_assoc_new(v, INT2FIX(sign));
}
|
.log(x) ⇒ Float .log(x, base) ⇒ Float
Returns the logarithm of x
. If additional second argument is given, it will be the base of logarithm. Otherwise it is e
(for the natural logarithm).
Domain: (0, INFINITY)
Codomain: (-INFINITY, INFINITY)
Math.log(0) #=> -Infinity
Math.log(1) #=> 0.0
Math.log(Math::E) #=> 1.0
Math.log(Math::E**3) #=> 3.0
Math.log(12, 3) #=> 2.2618595071429146
461 462 463 464 465 |
# File 'math.c', line 461
static VALUE
math_log(int argc, const VALUE *argv, VALUE unused_obj)
{
return rb_math_log(argc, argv);
}
|
.log10(x) ⇒ Float
571 572 573 574 575 576 577 578 579 580 581 582 583 |
# File 'math.c', line 571
static VALUE
math_log10(VALUE unused_obj, VALUE x)
{
size_t numbits;
double d = get_double_rshift(x, &numbits);
/* check for domain error */
if (d < 0.0) domain_error("log10");
/* check for pole error */
if (d == 0.0) return DBL2NUM(-HUGE_VAL);
return DBL2NUM(log10(d) + numbits * log10(2)); /* log10(d * 2 ** numbits) */
}
|
.log2(x) ⇒ Float
541 542 543 544 545 546 547 548 549 550 551 552 553 |
# File 'math.c', line 541
static VALUE
math_log2(VALUE unused_obj, VALUE x)
{
size_t numbits;
double d = get_double_rshift(x, &numbits);
/* check for domain error */
if (d < 0.0) domain_error("log2");
/* check for pole error */
if (d == 0.0) return DBL2NUM(-HUGE_VAL);
return DBL2NUM(log2(d) + numbits); /* log2(d * 2 ** numbits) */
}
|
.sin(x) ⇒ Float
140 141 142 143 144 |
# File 'math.c', line 140
static VALUE
math_sin(VALUE unused_obj, VALUE x)
{
return DBL2NUM(sin(Get_Double(x)));
}
|
.sinh(x) ⇒ Float
Computes the hyperbolic sine of x
(expressed in radians).
Domain: (-INFINITY, INFINITY)
Codomain: (-INFINITY, INFINITY)
Math.sinh(0) #=> 0.0
285 286 287 288 289 |
# File 'math.c', line 285
static VALUE
math_sinh(VALUE unused_obj, VALUE x)
{
return DBL2NUM(sinh(Get_Double(x)));
}
|
.sqrt(x) ⇒ Float
Returns the non-negative square root of x
.
Domain: [0, INFINITY)
Codomain:[0, INFINITY)
0.upto(10) {|x|
p [x, Math.sqrt(x), Math.sqrt(x)**2]
}
#=> [0, 0.0, 0.0]
# [1, 1.0, 1.0]
# [2, 1.4142135623731, 2.0]
# [3, 1.73205080756888, 3.0]
# [4, 2.0, 4.0]
# [5, 2.23606797749979, 5.0]
# [6, 2.44948974278318, 6.0]
# [7, 2.64575131106459, 7.0]
# [8, 2.82842712474619, 8.0]
# [9, 3.0, 9.0]
# [10, 3.16227766016838, 10.0]
Note that the limited precision of floating point arithmetic might lead to surprising results:
Math.sqrt(10**46).to_i #=> 99999999999999991611392 (!)
See also BigDecimal#sqrt and Integer.sqrt.
620 621 622 623 624 |
# File 'math.c', line 620
static VALUE
math_sqrt(VALUE unused_obj, VALUE x)
{
return rb_math_sqrt(x);
}
|
Instance Method Details
#acos(x) ⇒ Float (private)
181 182 183 184 185 186 187 188 189 190 |
# File 'math.c', line 181
static VALUE
math_acos(VALUE unused_obj, VALUE x)
{
double d;
d = Get_Double(x);
/* check for domain error */
if (d < -1.0 || 1.0 < d) domain_error("acos");
return DBL2NUM(acos(d));
}
|
#acosh(x) ⇒ Float (private)
340 341 342 343 344 345 346 347 348 349 |
# File 'math.c', line 340
static VALUE
math_acosh(VALUE unused_obj, VALUE x)
{
double d;
d = Get_Double(x);
/* check for domain error */
if (d < 1.0) domain_error("acosh");
return DBL2NUM(acosh(d));
}
|
#asin(x) ⇒ Float (private)
205 206 207 208 209 210 211 212 213 214 |
# File 'math.c', line 205
static VALUE
math_asin(VALUE unused_obj, VALUE x)
{
double d;
d = Get_Double(x);
/* check for domain error */
if (d < -1.0 || 1.0 < d) domain_error("asin");
return DBL2NUM(asin(d));
}
|
#asinh(x) ⇒ Float (private)
365 366 367 368 369 |
# File 'math.c', line 365
static VALUE
math_asinh(VALUE unused_obj, VALUE x)
{
return DBL2NUM(asinh(Get_Double(x)));
}
|
#atan(x) ⇒ Float (private)
229 230 231 232 233 |
# File 'math.c', line 229
static VALUE
math_atan(VALUE unused_obj, VALUE x)
{
return DBL2NUM(atan(Get_Double(x)));
}
|
#atan2(y, x) ⇒ Float (private)
Computes the arc tangent given y
and x
. Returns a Float in the range -PI..PI. Return value is a angle in radians between the positive x-axis of cartesian plane and the point given by the coordinates (x
, y
) on it.
Domain: (-INFINITY, INFINITY)
Codomain: [-PI, PI]
Math.atan2(-0.0, -1.0) #=> -3.141592653589793
Math.atan2(-1.0, -1.0) #=> -2.356194490192345
Math.atan2(-1.0, 0.0) #=> -1.5707963267948966
Math.atan2(-1.0, 1.0) #=> -0.7853981633974483
Math.atan2(-0.0, 1.0) #=> -0.0
Math.atan2(0.0, 1.0) #=> 0.0
Math.atan2(1.0, 1.0) #=> 0.7853981633974483
Math.atan2(1.0, 0.0) #=> 1.5707963267948966
Math.atan2(1.0, -1.0) #=> 2.356194490192345
Math.atan2(0.0, -1.0) #=> 3.141592653589793
Math.atan2(INFINITY, INFINITY) #=> 0.7853981633974483
Math.atan2(INFINITY, -INFINITY) #=> 2.356194490192345
Math.atan2(-INFINITY, INFINITY) #=> -0.7853981633974483
Math.atan2(-INFINITY, -INFINITY) #=> -2.356194490192345
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
# File 'math.c', line 74
static VALUE
math_atan2(VALUE unused_obj, VALUE y, VALUE x)
{
double dx, dy;
dx = Get_Double(x);
dy = Get_Double(y);
if (dx == 0.0 && dy == 0.0) {
if (!signbit(dx))
return DBL2NUM(dy);
if (!signbit(dy))
return DBL2NUM(M_PI);
return DBL2NUM(-M_PI);
}
#ifndef ATAN2_INF_C99
if (isinf(dx) && isinf(dy)) {
/* optimization for FLONUM */
if (dx < 0.0) {
const double dz = (3.0 * M_PI / 4.0);
return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz);
}
else {
const double dz = (M_PI / 4.0);
return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz);
}
}
#endif
return DBL2NUM(atan2(dy, dx));
}
|
#atanh(x) ⇒ Float (private)
385 386 387 388 389 390 391 392 393 394 395 396 397 |
# File 'math.c', line 385
static VALUE
math_atanh(VALUE unused_obj, VALUE x)
{
double d;
d = Get_Double(x);
/* check for domain error */
if (d < -1.0 || +1.0 < d) domain_error("atanh");
/* check for pole error */
if (d == -1.0) return DBL2NUM(-HUGE_VAL);
if (d == +1.0) return DBL2NUM(+HUGE_VAL);
return DBL2NUM(atanh(d));
}
|
#cbrt(x) ⇒ Float (private)
Returns the cube root of x
.
Domain: (-INFINITY, INFINITY)
Codomain: (-INFINITY, INFINITY)
-9.upto(9) {|x|
p [x, Math.cbrt(x), Math.cbrt(x)**3]
}
#=> [-9, -2.0800838230519, -9.0]
# [-8, -2.0, -8.0]
# [-7, -1.91293118277239, -7.0]
# [-6, -1.81712059283214, -6.0]
# [-5, -1.7099759466767, -5.0]
# [-4, -1.5874010519682, -4.0]
# [-3, -1.44224957030741, -3.0]
# [-2, -1.25992104989487, -2.0]
# [-1, -1.0, -1.0]
# [0, 0.0, 0.0]
# [1, 1.0, 1.0]
# [2, 1.25992104989487, 2.0]
# [3, 1.44224957030741, 3.0]
# [4, 1.5874010519682, 4.0]
# [5, 1.7099759466767, 5.0]
# [6, 1.81712059283214, 6.0]
# [7, 1.91293118277239, 7.0]
# [8, 2.0, 8.0]
# [9, 2.0800838230519, 9.0]
700 701 702 703 704 705 706 707 708 709 710 711 |
# File 'math.c', line 700
static VALUE
math_cbrt(VALUE unused_obj, VALUE x)
{
double f = Get_Double(x);
double r = cbrt(f);
#if defined __GLIBC__
if (isfinite(r)) {
r = (2.0 * r + (f / r / r)) / 3.0;
}
#endif
return DBL2NUM(r);
}
|
#cos(x) ⇒ Float (private)
119 120 121 122 123 |
# File 'math.c', line 119
static VALUE
math_cos(VALUE unused_obj, VALUE x)
{
return DBL2NUM(cos(Get_Double(x)));
}
|
#cosh(x) ⇒ Float (private)
257 258 259 260 261 |
# File 'math.c', line 257
static VALUE
math_cosh(VALUE unused_obj, VALUE x)
{
return DBL2NUM(cosh(Get_Double(x)));
}
|
#erf(x) ⇒ Float (private)
Calculates the error function of x
.
Domain: (-INFINITY, INFINITY)
Codomain: (-1, 1)
Math.erf(0) #=> 0.0
780 781 782 783 784 |
# File 'math.c', line 780
static VALUE
math_erf(VALUE unused_obj, VALUE x)
{
return DBL2NUM(erf(Get_Double(x)));
}
|
#erfc(x) ⇒ Float (private)
Calculates the complementary error function of x.
Domain: (-INFINITY, INFINITY)
Codomain: (0, 2)
Math.erfc(0) #=> 1.0
800 801 802 803 804 |
# File 'math.c', line 800
static VALUE
math_erfc(VALUE unused_obj, VALUE x)
{
return DBL2NUM(erfc(Get_Double(x)));
}
|
#exp(x) ⇒ Float (private)
415 416 417 418 419 |
# File 'math.c', line 415
static VALUE
math_exp(VALUE unused_obj, VALUE x)
{
return DBL2NUM(exp(Get_Double(x)));
}
|
#frexp(x) ⇒ Array (private)
724 725 726 727 728 729 730 731 732 |
# File 'math.c', line 724
static VALUE
math_frexp(VALUE unused_obj, VALUE x)
{
double d;
int exp;
d = frexp(Get_Double(x), &exp);
return rb_assoc_new(DBL2NUM(d), INT2NUM(exp));
}
|
#gamma(x) ⇒ Float (private)
Calculates the gamma function of x.
Note that gamma(n) is same as fact(n-1) for integer n > 0.
However gamma(n) returns float and can be an approximation.
def fact(n) (1..n).inject(1) {|r,i| r*i } end
1.upto(26) {|i| p [i, Math.gamma(i), fact(i-1)] }
#=> [1, 1.0, 1]
# [2, 1.0, 1]
# [3, 2.0, 2]
# [4, 6.0, 6]
# [5, 24.0, 24]
# [6, 120.0, 120]
# [7, 720.0, 720]
# [8, 5040.0, 5040]
# [9, 40320.0, 40320]
# [10, 362880.0, 362880]
# [11, 3628800.0, 3628800]
# [12, 39916800.0, 39916800]
# [13, 479001600.0, 479001600]
# [14, 6227020800.0, 6227020800]
# [15, 87178291200.0, 87178291200]
# [16, 1307674368000.0, 1307674368000]
# [17, 20922789888000.0, 20922789888000]
# [18, 355687428096000.0, 355687428096000]
# [19, 6.402373705728e+15, 6402373705728000]
# [20, 1.21645100408832e+17, 121645100408832000]
# [21, 2.43290200817664e+18, 2432902008176640000]
# [22, 5.109094217170944e+19, 51090942171709440000]
# [23, 1.1240007277776077e+21, 1124000727777607680000]
# [24, 2.5852016738885062e+22, 25852016738884976640000]
# [25, 6.204484017332391e+23, 620448401733239439360000]
# [26, 1.5511210043330954e+25, 15511210043330985984000000]
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 |
# File 'math.c', line 846
static VALUE
math_gamma(VALUE unused_obj, VALUE x)
{
static const double fact_table[] = {
/* fact(0) */ 1.0,
/* fact(1) */ 1.0,
/* fact(2) */ 2.0,
/* fact(3) */ 6.0,
/* fact(4) */ 24.0,
/* fact(5) */ 120.0,
/* fact(6) */ 720.0,
/* fact(7) */ 5040.0,
/* fact(8) */ 40320.0,
/* fact(9) */ 362880.0,
/* fact(10) */ 3628800.0,
/* fact(11) */ 39916800.0,
/* fact(12) */ 479001600.0,
/* fact(13) */ 6227020800.0,
/* fact(14) */ 87178291200.0,
/* fact(15) */ 1307674368000.0,
/* fact(16) */ 20922789888000.0,
/* fact(17) */ 355687428096000.0,
/* fact(18) */ 6402373705728000.0,
/* fact(19) */ 121645100408832000.0,
/* fact(20) */ 2432902008176640000.0,
/* fact(21) */ 51090942171709440000.0,
/* fact(22) */ 1124000727777607680000.0,
/* fact(23)=25852016738884976640000 needs 56bit mantissa which is
* impossible to represent exactly in IEEE 754 double which have
* 53bit mantissa. */
};
enum {NFACT_TABLE = numberof(fact_table)};
double d;
d = Get_Double(x);
/* check for domain error */
if (isinf(d)) {
if (signbit(d)) domain_error("gamma");
return DBL2NUM(HUGE_VAL);
}
if (d == 0.0) {
return signbit(d) ? DBL2NUM(-HUGE_VAL) : DBL2NUM(HUGE_VAL);
}
if (d == floor(d)) {
if (d < 0.0) domain_error("gamma");
if (1.0 <= d && d <= (double)NFACT_TABLE) {
return DBL2NUM(fact_table[(int)d - 1]);
}
}
return DBL2NUM(tgamma(d));
}
|
#hypot(x, y) ⇒ Float (private)
760 761 762 763 764 |
# File 'math.c', line 760
static VALUE
math_hypot(VALUE unused_obj, VALUE x, VALUE y)
{
return DBL2NUM(hypot(Get_Double(x), Get_Double(y)));
}
|
#ldexp(fraction, exponent) ⇒ Float (private)
744 745 746 747 748 |
# File 'math.c', line 744
static VALUE
math_ldexp(VALUE unused_obj, VALUE x, VALUE n)
{
return DBL2NUM(ldexp(Get_Double(x), NUM2INT(n)));
}
|
#lgamma(x) ⇒ Array, ... (private)
Calculates the logarithmic gamma of x
and the sign of gamma of x
.
Math.lgamma(x) is same as
[Math.log(Math.gamma(x).abs), Math.gamma(x) < 0 ? -1 : 1]
but avoid overflow by Math.gamma(x) for large x.
Math.lgamma(0) #=> [Infinity, 1]
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 |
# File 'math.c', line 911
static VALUE
math_lgamma(VALUE unused_obj, VALUE x)
{
double d;
int sign=1;
VALUE v;
d = Get_Double(x);
/* check for domain error */
if (isinf(d)) {
if (signbit(d)) domain_error("lgamma");
return rb_assoc_new(DBL2NUM(HUGE_VAL), INT2FIX(1));
}
if (d == 0.0) {
VALUE vsign = signbit(d) ? INT2FIX(-1) : INT2FIX(+1);
return rb_assoc_new(DBL2NUM(HUGE_VAL), vsign);
}
v = DBL2NUM(lgamma_r(d, &sign));
return rb_assoc_new(v, INT2FIX(sign));
}
|
#log(x) ⇒ Float (private) #log(x, base) ⇒ Float (private)
Returns the logarithm of x
. If additional second argument is given, it will be the base of logarithm. Otherwise it is e
(for the natural logarithm).
Domain: (0, INFINITY)
Codomain: (-INFINITY, INFINITY)
Math.log(0) #=> -Infinity
Math.log(1) #=> 0.0
Math.log(Math::E) #=> 1.0
Math.log(Math::E**3) #=> 3.0
Math.log(12, 3) #=> 2.2618595071429146
461 462 463 464 465 |
# File 'math.c', line 461
static VALUE
math_log(int argc, const VALUE *argv, VALUE unused_obj)
{
return rb_math_log(argc, argv);
}
|
#log10(x) ⇒ Float (private)
571 572 573 574 575 576 577 578 579 580 581 582 583 |
# File 'math.c', line 571
static VALUE
math_log10(VALUE unused_obj, VALUE x)
{
size_t numbits;
double d = get_double_rshift(x, &numbits);
/* check for domain error */
if (d < 0.0) domain_error("log10");
/* check for pole error */
if (d == 0.0) return DBL2NUM(-HUGE_VAL);
return DBL2NUM(log10(d) + numbits * log10(2)); /* log10(d * 2 ** numbits) */
}
|
#log2(x) ⇒ Float (private)
541 542 543 544 545 546 547 548 549 550 551 552 553 |
# File 'math.c', line 541
static VALUE
math_log2(VALUE unused_obj, VALUE x)
{
size_t numbits;
double d = get_double_rshift(x, &numbits);
/* check for domain error */
if (d < 0.0) domain_error("log2");
/* check for pole error */
if (d == 0.0) return DBL2NUM(-HUGE_VAL);
return DBL2NUM(log2(d) + numbits); /* log2(d * 2 ** numbits) */
}
|
#sin(x) ⇒ Float (private)
140 141 142 143 144 |
# File 'math.c', line 140
static VALUE
math_sin(VALUE unused_obj, VALUE x)
{
return DBL2NUM(sin(Get_Double(x)));
}
|
#sinh(x) ⇒ Float (private)
285 286 287 288 289 |
# File 'math.c', line 285
static VALUE
math_sinh(VALUE unused_obj, VALUE x)
{
return DBL2NUM(sinh(Get_Double(x)));
}
|
#sqrt(x) ⇒ Float (private)
Returns the non-negative square root of x
.
Domain: [0, INFINITY)
Codomain:[0, INFINITY)
0.upto(10) {|x|
p [x, Math.sqrt(x), Math.sqrt(x)**2]
}
#=> [0, 0.0, 0.0]
# [1, 1.0, 1.0]
# [2, 1.4142135623731, 2.0]
# [3, 1.73205080756888, 3.0]
# [4, 2.0, 4.0]
# [5, 2.23606797749979, 5.0]
# [6, 2.44948974278318, 6.0]
# [7, 2.64575131106459, 7.0]
# [8, 2.82842712474619, 8.0]
# [9, 3.0, 9.0]
# [10, 3.16227766016838, 10.0]
Note that the limited precision of floating point arithmetic might lead to surprising results:
Math.sqrt(10**46).to_i #=> 99999999999999991611392 (!)
See also BigDecimal#sqrt and Integer.sqrt.
620 621 622 623 624 |
# File 'math.c', line 620
static VALUE
math_sqrt(VALUE unused_obj, VALUE x)
{
return rb_math_sqrt(x);
}
|
#tan(x) ⇒ Float (private)
161 162 163 164 165 |
# File 'math.c', line 161
static VALUE
math_tan(VALUE unused_obj, VALUE x)
{
return DBL2NUM(tan(Get_Double(x)));
}
|