Module: CMath

Includes:
Math
Defined in:
lib/cmath.rb

Overview

frozen_string_literal: false

Trigonometric and transcendental functions for complex numbers.

CMath is a library that provides trigonometric and transcendental functions for complex numbers. The functions in this module accept integers, floating-point numbers or complex numbers as arguments.

Note that the selection of functions is similar, but not identical, to that in module math. The reason for having two modules is that some users aren’t interested in complex numbers, and perhaps don’t even know what they are. They would rather have Math.sqrt(-1) raise an exception than return a complex number.

For more information you can see Complex class.

Usage

To start using this library, simply require cmath library:

require "cmath"

Class Method Summary collapse

Class Method Details

.acos(z) ⇒ Object

Returns the arc cosine of z

CMath.acos(1 + 1i) #=> (0.9045568943023813-1.0612750619050357i)


281
282
283
284
285
286
287
288
289
290
291
# File 'lib/cmath.rb', line 281

def acos(z)
  begin
    if z.real? and z >= -1 and z <= 1
      RealMath.acos(z)
    else
      (-1.0).i * log(z + 1.0.i * sqrt(1.0 - z * z))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.acos!Object

.acosh(z) ⇒ Object

returns the inverse hyperbolic cosine of z

CMath.acosh(1 + 1i) #=> (1.0612750619050357+0.9045568943023813i)


346
347
348
349
350
351
352
353
354
355
356
# File 'lib/cmath.rb', line 346

def acosh(z)
  begin
    if z.real? and z >= 1
      RealMath.acosh(z)
    else
      log(z + sqrt(z * z - 1.0))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.acosh!Object

.asin(z) ⇒ Object

Returns the arc sine of z

CMath.asin(1 + 1i) #=> (0.6662394324925153+1.0612750619050355i)


265
266
267
268
269
270
271
272
273
274
275
# File 'lib/cmath.rb', line 265

def asin(z)
  begin
    if z.real? and z >= -1 and z <= 1
      RealMath.asin(z)
    else
      (-1.0).i * log(1.0.i * z + sqrt(1.0 - z * z))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.asin!Object

.asinh(z) ⇒ Object

returns the inverse hyperbolic sine of z

CMath.asinh(1 + 1i) #=> (1.0612750619050357+0.6662394324925153i)


330
331
332
333
334
335
336
337
338
339
340
# File 'lib/cmath.rb', line 330

def asinh(z)
  begin
    if z.real?
      RealMath.asinh(z)
    else
      log(z + sqrt(1.0 + z * z))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.asinh!Object

.atan(z) ⇒ Object

Returns the arc tangent of z

CMath.atan(1 + 1i) #=> (1.0172219678978514+0.4023594781085251i)


297
298
299
300
301
302
303
304
305
306
307
# File 'lib/cmath.rb', line 297

def atan(z)
  begin
    if z.real?
      RealMath.atan(z)
    else
      1.0.i * log((1.0.i + z) / (1.0.i - z)) / 2.0
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.atan!Object

.atan2(y, x) ⇒ Object

returns the arc tangent of y divided by x using the signs of y and x to determine the quadrant

CMath.atan2(1 + 1i, 0) #=> (1.5707963267948966+0.0i)


314
315
316
317
318
319
320
321
322
323
324
# File 'lib/cmath.rb', line 314

def atan2(y,x)
  begin
    if y.real? and x.real?
      RealMath.atan2(y,x)
    else
      (-1.0).i * log((x + 1.0.i * y) / sqrt(x * x + y * y))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.atan2!Object

.atanh(z) ⇒ Object

returns the inverse hyperbolic tangent of z

CMath.atanh(1 + 1i) #=> (0.4023594781085251+1.0172219678978514i)


362
363
364
365
366
367
368
369
370
371
372
# File 'lib/cmath.rb', line 362

def atanh(z)
  begin
    if z.real? and z >= -1 and z <= 1
      RealMath.atanh(z)
    else
      log((1.0 + z) / (1.0 - z)) / 2.0
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.atanh!Object

.cbrt(z) ⇒ Object

Returns the principal value of the cube root of z

CMath.cbrt(1 + 4i) #=> (1.449461632813119+0.6858152562177092i)


157
158
159
# File 'lib/cmath.rb', line 157

def cbrt(z)
  z ** (1.0/3)
end

.cbrt!Object

.cos(z) ⇒ Object

Returns the cosine of z, where z is given in radians

CMath.cos(1 + 1i) #=> (0.8337300251311491-0.9888977057628651i)


182
183
184
185
186
187
188
189
190
191
192
193
# File 'lib/cmath.rb', line 182

def cos(z)
  begin
    if z.real?
      RealMath.cos(z)
    else
      Complex(RealMath.cos(z.real) * RealMath.cosh(z.imag),
              -RealMath.sin(z.real) * RealMath.sinh(z.imag))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.cos!Object

.cosh(z) ⇒ Object

Returns the hyperbolic cosine of z, where z is given in radians

CMath.cosh(1 + 1i) #=> (0.8337300251311491+0.9888977057628651i)


232
233
234
235
236
237
238
239
240
241
242
243
# File 'lib/cmath.rb', line 232

def cosh(z)
  begin
    if z.real?
      RealMath.cosh(z)
    else
      Complex(RealMath.cosh(z.real) * RealMath.cos(z.imag),
              RealMath.sinh(z.real) * RealMath.sin(z.imag))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.cosh!Object

.erfObject

.erfcObject

.exp(z) ⇒ Object

Math::E raised to the z power

CMath.exp(1.i * Math::PI) #=> (-1.0+1.2246467991473532e-16i)


62
63
64
65
66
67
68
69
70
71
72
73
74
# File 'lib/cmath.rb', line 62

def exp(z)
  begin
    if z.real?
      RealMath.exp(z)
    else
      ere = RealMath.exp(z.real)
      Complex(ere * RealMath.cos(z.imag),
              ere * RealMath.sin(z.imag))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.exp!Object

.frexpObject

.gammaObject

.handle_no_method_errorObject

:nodoc:



426
427
428
429
430
431
432
# File 'lib/cmath.rb', line 426

def handle_no_method_error # :nodoc:
  if $!.name == :real?
    raise TypeError, "Numeric Number required"
  else
    raise
  end
end

.hypotObject

.ldexpObject

.lgammaObject

.log(z, b = ::Math::E) ⇒ Object

Returns the natural logarithm of Complex. If a second argument is given, it will be the base of logarithm.

CMath.log(1 + 4i)     #=> (1.416606672028108+1.3258176636680326i)
CMath.log(1 + 4i, 10) #=> (0.6152244606891369+0.5757952953408879i)


82
83
84
85
86
87
88
89
90
91
92
# File 'lib/cmath.rb', line 82

def log(z, b=::Math::E)
  begin
    if z.real? && z >= 0 && b >= 0
      RealMath.log(z, b)
    else
      Complex(RealMath.log(z.abs), z.arg) / log(b)
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.log!Object

.log10(z) ⇒ Object

Returns the base 10 logarithm of z

CMath.log10(-1) #=> (0.0+1.3643763538418412i)


114
115
116
117
118
119
120
121
122
123
124
# File 'lib/cmath.rb', line 114

def log10(z)
  begin
    if z.real? and z >= 0
      RealMath.log10(z)
    else
      log(z) / RealMath.log(10)
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.log10!Object

.log2(z) ⇒ Object

Returns the base 2 logarithm of z

CMath.log2(-1) => (0.0+4.532360141827194i)


98
99
100
101
102
103
104
105
106
107
108
# File 'lib/cmath.rb', line 98

def log2(z)
  begin
    if z.real? and z >= 0
      RealMath.log2(z)
    else
      log(z) / RealMath.log(2)
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.log2!Object

.sin(z) ⇒ Object

Returns the sine of z, where z is given in radians

CMath.sin(1 + 1i) #=> (1.2984575814159773+0.6349639147847361i)


165
166
167
168
169
170
171
172
173
174
175
176
# File 'lib/cmath.rb', line 165

def sin(z)
  begin
    if z.real?
      RealMath.sin(z)
    else
      Complex(RealMath.sin(z.real) * RealMath.cosh(z.imag),
              RealMath.cos(z.real) * RealMath.sinh(z.imag))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.sin!Object

.sinh(z) ⇒ Object

Returns the hyperbolic sine of z, where z is given in radians

CMath.sinh(1 + 1i) #=> (0.6349639147847361+1.2984575814159773i)


215
216
217
218
219
220
221
222
223
224
225
226
# File 'lib/cmath.rb', line 215

def sinh(z)
  begin
    if z.real?
      RealMath.sinh(z)
    else
      Complex(RealMath.sinh(z.real) * RealMath.cos(z.imag),
              RealMath.cosh(z.real) * RealMath.sin(z.imag))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.sinh!Object

.sqrt(z) ⇒ Object

Returns the non-negative square root of Complex.

CMath.sqrt(-1 + 0i) #=> 0.0+1.0i


130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# File 'lib/cmath.rb', line 130

def sqrt(z)
  begin
    if z.real?
      if z < 0
        Complex(0, RealMath.sqrt(-z))
      else
        RealMath.sqrt(z)
      end
    else
      if z.imag < 0 ||
          (z.imag == 0 && z.imag.to_s[0] == '-')
        sqrt(z.conjugate).conjugate
      else
        r = z.abs
        x = z.real
        Complex(RealMath.sqrt((r + x) / 2.0), RealMath.sqrt((r - x) / 2.0))
      end
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.sqrt!Object

.tan(z) ⇒ Object

Returns the tangent of z, where z is given in radians

CMath.tan(1 + 1i) #=> (0.27175258531951174+1.0839233273386943i)


199
200
201
202
203
204
205
206
207
208
209
# File 'lib/cmath.rb', line 199

def tan(z)
  begin
    if z.real?
      RealMath.tan(z)
    else
      sin(z) / cos(z)
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.tan!Object

.tanh(z) ⇒ Object

Returns the hyperbolic tangent of z, where z is given in radians

CMath.tanh(1 + 1i) #=> (1.0839233273386943+0.27175258531951174i)


249
250
251
252
253
254
255
256
257
258
259
# File 'lib/cmath.rb', line 249

def tanh(z)
  begin
    if z.real?
      RealMath.tanh(z)
    else
      sinh(z) / cosh(z)
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

.tanh!Object